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Abstract

A (k,g)-cage is a k-regular graph of girth g and with the least possible number of
vertices. In this paper, we investigate the problem of how many connected components

there will be after removing a cutset of up to k vertices from a (k, g)-cage.



1 Definitions

Throughout this paper, only undirected simple graphs without loops or multiple edges are

considered. Unless otherwise stated, we follow [3] for terminology and definitions.

The vertex set (respectively, edge set) of a graph G is denoted by V(G) (respectively,
E(G)). If V' is a nonempty subset of V' then the subgraph induced by V' is denoted by
G[V']. Similarly, if E’ is a nonempty subset of E then the subgraph induced by E’ is denoted
by G[E']. The subgraph obtained from G by deleting the vertices in V', together with their
incident edges, is denoted by G — V’. The graph obtained from G by deleting a set of edges
E’ is denoted by G — F'.

The set of vertices adjacent to a vertex v is denoted by N(v). If X is a nonempty subset
of vertices, then N(X) stands for the set (U,ex N(2)) \ X. The degree of a vertex v is
deg(v) = |N(v)|, and a graph is called regular when all the vertices have the same degree.
The minimum degree of the graph is denoted by d. The distance d(u,v) of two vertices u and
v in V(G) is the length of the shortest path between u and v. We also use the notion of a
distance between a vertex v and a set of vertices X, written d(v, X) : it is the distance from

v to a closest vertex in X.

The length of a shortest cycle in a graph G is called the girth of G. A k-regular graph with
girth g is called a (k, g)-graph. A (k, g)-graph is called a (k, g)-cage if it has the least possible
number of vertices. Throughout this paper, f(k, g) stands for the order of a (k, g)-cage.

A graph G is connected if there is a path between any two vertices of G. A connected
component of GG is a maximal connected subgraph. Two vertices are in the same connected
component if and only if there exists a path between them. A nonempty connected graph

has one connected component.

Suppose that G is a connected graph. We say that G is t-connected if the deletion of at
least t vertices of G is required to disconnect the graph. Similarly, we say that a graph is

t-edge-connected if the deletion of at least ¢ edges of G is required to disconnect the graph. A



vertez-cut (respectively, edge-cut) of a graph is a set of vertices (respectively, edges), whose
removal disconnects the graph. A graph is maximally connected (respectively, mazimally
edge-connected) if the minimum cardinality of vertex-cut (respectively, edge-cut) is equal to
the minimum degree of the graph. An edge-cut W is called trivial if it contains all the edges
incident with some vertex, that is, {xz; € E(G) : z; € N(x)} C W, for some z € V(G). A
vertex-cut S is called trivial if there exists some vertex v in G — .S such that N(v) is contained
in S. A maximally edge-connected graph is edge superconnected if all its minimal edge-cuts

(with cardinality equal to d) are trivial. A vertex superconnected graph is defined similarly.

2 Introduction

Network reliability concerns the capability of an interconnection network to provide enough
communication volume to support message exchanges, it is a very important parameter to
study. It is customary to model a network structure as a graph and study the properties of
network structures in graph theory terms, there are many parameters have been introduced
to measure the reliability of a network structure. In a network with unreliable components
such as wires or communication devices, disconnection is a major concern, which is caused by
faulty nodes and/or faulty edges, preventing the disconnected parties from communicating
with each other. The connectivity is used to measure the connectedness of a graph, i.e. how
likely a graph is to be disconnected. In this paper, we shall study the connectivity of an

important graph structure which is known as cages.

Cages were introduced by Tutte in [16]. For example, the cycle C,, is the unique (2, n)-
cage, the complete graph K, is the unique (n — 1, 3)-cage, the complete bipartite graph K, ,,
is the (n,4)-cage, the Petersen graph is the (3,5)-cage, the Hoffman-Singleton graph is the
(7,5)-cage, and the Heawood graph is the (3,6)-cage. Note that cages are not necessarily
unique for each given pair of values k£ and g. For instance, there exist 18 non-isomorphic

(3,9)-cages, all of order 58 [2].

Much research has been carried out on cages; however, in general, not a lot is known



about this structure. The study of the connectivity of cages has been suggested by several
authors. In particular, in [4, 8] was proved that every (k, g)-cage with k > 3 is 3-connected.

Furthermore, Fu, Huang, and Rodger [7] have proposed the following conjecture.
Conjecture 1 [7] Every (k,g)-cage is mazimally connected.

There are many results available related to this conjecture, see [9, 10, 11, 12], but currently

the conjecture is still open.

As we know that connectivity is a very rough measure of the vulnerability, many refine-
ments of the classical connectivity concept have been introduced, for example, the toughness,
the restricted connectivity, etc. In this paper, we investigate the number of connected compo-
nents obtained from a (k, g)-cage by removing the vertices of a vertex-cut S with cardinality

|S| < k. The results reveal new structural properties of (k, g)-cages.

3 New results

Jiang and Mubayi [8] proved the following theorem.

Theorem 3.1 [8] Let S be a vertez-cut of a (k,g)-cage with k > 3 and g > 5. Then,
the diameter of G|[S] is at least |g/2]. Furthermore, the inequality is strict if dgs)(u,v) is

mazximized for exactly one pair of vertices.

Let w(G —S) denote the number of components of G —.S where S is any vertex-cut. Using

Theorem 3.1 it was shown in [13] the following result for cubic cages.

Theorem 3.2 [13] Every cubic cage is quasi 4-connected, that is to say, any minimum

vertex-cut of a cubic cage is the neighborhood of a vertex, say N(v), and w(G — N(v)) = 2.

Following the same line of reasoning, using Theorem 3.1 we immediately obtain the fol-

lowing corollary.



Corollary 3.1 Let G be a (k,g)-cage with k > 3 and g > 6. For every vertex v of G, we
have w(G — N (v)) = 2.

Proof. Suppose G has a vertex v such that G — N(v) has at least three components, one
of them consisting of vertex v. Then S = {v} U N(v) is a vertex-cut because G — S has at
least two or more components. As its induced subgraph G[{v} U N(v)] has diameter 2, from

Theorem 3.1, it follows that 2 > |g/2], which is a contradiction because g > 6. m

Next question concerns a nontrivial vertex-cut. Suppose G is an edge superconnected

k-regular graph, and S is a nontrivial vertex-cut. The following theorem provides an upper

bound for w(G — 5).

Theorem 3.3 Let G be a k-regular edge superconnected graph. Then for any vertex-cut S
the following statements hold:

(i) If S is nontrivial then the number of components is w(G — S) < k|S|/(k + 1).

(ii) If the girth g > 5, |S| < k and k > 4 is even, then either w(G —S) < k—2 or G
has vertex connectivity at most k — 2 except for k = 4 and S trivial, in which case

w(G—8) <3.

Proof. Let S be a nontrivial vertex-cut of G and let C; (i =1,2,...,w(G — 5)) denote the
components of the graph obtained when the vertices of S are removed from G. Let us also
denote by [S,V(C;)] the set of edges joining a vertex in S with a vertex in Cj. Since S is
nontrivial then every C; has at least two vertices. Furthermore, since G is edge superconnected

we have

’[S,V(CZ-)]‘2k+1,i:1,2,...,w(G—S). (1)

Moreover, as the graph is k-regular, by (1) we have

w(G-S5)
w@G-Sk+1)< Y ][s, V(CZ»)]‘ < K[S]. 2)

i=1
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Therefore w(G — S) < k|S|/(k + 1), hence item (i) holds. To prove (ii) assume k > 4
even and |S| < k. First suppose that S is nontrivial, thus we may apply item (i) whence
w(G—S) < k—1. Suppose w(G —S) = k—1 because otherwise item (i7) is valid. Substituting
this value in (2) and taking into account (1) it follows that there exists a component C' such
that

1S.V(E@)| = k+1. (3)
Then |N(S) N V(C)| < \[5, V(@)]‘ = k+1. If [N(S) N V(C)| = k4 1 then each vertex of
N(S)Nn V(é’) is adjacent to exactly one vertex of S, which means that each of these k + 1
vertices has degree k — 1 in C. In other words, each vertex of C has degree k except k + 1
(which is odd) vertices which have odd degree k— 1, which is impossible. If [N(S)NV (C)| = k
then, by (3), one vertex of N(S) N V(C) has degree k — 2 in C, while the others must have
degree k—1in C. That is, C has k — 1 vertices of odd degree k — 1, which is again impossible.
If [IN(S) N V(C)| = k — 1 then we would obtain that there is an odd number of vertices in
N(S)NV(C) of odd degree in C (cither k — 2 vertices of degree k — 1 and 1 vertex of degree
k—3, or k—3 vertices of degree k—1), which is also impossible. Thus we have [N (S)NV(C)| <
k — 2. Now, in order to prove that N(S) N V(C) is a vertex-cut of G, it is enough to prove
V(C) # N(S)NV(C). Otherwise, we would have |V (C)|+|S| = [N(S)NV(C)|+|S| < 2k—2.
As S is nontrivial every vertex v € N(S)N V(a) has a neighbor w € N(S)N V(a) Since the
girth g > 5 then N(v) N N(w) = 0, hence [V(C)|+|S| > [{u, v}| +|N(u) —w|+ |N(w) —u| >
2+ 2(k — 1) = 2k, which is a contradiction. Then G has vertex connectivity at most k — 2
if S is a nontrivial vertex-cut. To finish the proof, assume S is trivial, which means that
there exists a vertex v in G — S such that S = N(v) because |S| < k. That is, there is one
component formed by vertex v and the remaining components must have cardinality at least

2, because the girth g > 5. Therefore, (1) still holds for every component except for that

formed by vertex v. Hence we have
(WG = N@)=DE+1) < > |IN@), V]| < k(k - 1), ()
Ci gV (Cs)
which implies w(G — N(v)) < k — 1. Suppose that w(G — N(v)) = k — 1 and k > 6, from

(1) and (4) we obtain again (3), so that the reasoning is the same as above to prove that the



vertex connectivity is at most k — 2. [ |

Combining results in [11] and [10], we have concluded in [10] that:

Theorem 3.4 [10] All (k, g)-cages are edge superconnected, that is, all the minimal edge-

cuts are trivial.

Therefore, combining Theorems 3.3 and 3.4 and Corollary 3.1, we obtain the following

result, whose proof is immediate and, therefore, is omitted.

Corollary 3.2 Let G be a (k, g)-cage with g > 5. Then for any vertez-cut S the following
statements hold:
(i) If S is nontrivial then |S|/w(G — S) > (k+1)/k.

(i1) If the girth g > 5, S is nontrivial with |S| < k and k > 4 is even, then either w(G—S) <

k — 2 or G has vertex connectivity at most k — 2.
(i13) If S is trivial with |S| < k, then w(G — S) = 2.
The toughness 7(G) of a non complete graph G is defined as 7(G) = min{|S|/w(G — S)},
where the minimum is taken over all cut-sets S. Thus, Corollary 3.2 is a first step to find a

lower bound for the toughness of a (k, g)-cage with & > 3 and g > 5. It remains to find a

lower bound for |S|/w(G — S) for every trivial vertex-cut S with |S| > k + 1.

Furthermore, in [12] it was proved the following result.

Theorem 3.5 [12] Every (k, g)-cage with k > 4 and g > 10 is 4-connected.

As an immediate consequence of Theorems 3.4 and 3.5 and Corollary 3.2 the following

result is derived for (4, g)-cages.



Corollary 3.3 Let G be a (4, g)-cage with g > 10. Then either G is vertex superconnected

or w(G — S) = 2, for every nontrivial vertez-cut S with |S| = 4.

Since Conjecture 1 is still open, to reveal more structural properties of (k, g)-cages, next,
we would like to show that the deletion of at most k — 1 vertices from a (k, g)-cage G, with
k >4 and g > 11, results in a new graph with at most 2 connected components. Hopefully,

this result will contribute towards settling Conjecture 1.

In order to prove this result, we shall often use the following well known monotonicity

theorem.
Theorem 3.6 [5, 7] If k >3 and 3 < g1 < go then f(k,q1) < f(k, g2)-
Moreover, we need the following lemma which has been proved in [1, 6, 14, 15].

Lemma 3.1 [1, 6, 14, 15] Let G be a graph with girth g, and minimum degree §. Assume
that S is a vertex-cut of cardinality |S| < 6 — 1. Then, for any connected component C in

G — S, there exists some vertex x € V(C) such that d(x,S) > [(g — 1)/2].
We begin by proving a technical lemma.

Lemma 3.2 Let G be a k-regular graph and assume that S = {s; : i =1,...,|S|} is a vertez-
cut. Suppose that A and B are two connected components of G—S and C = G—S—(AUB).

Then one of the following numbers is even

(i) KIS| — 12 [Nasi)l,
(ii) kIS| = S |Ng(s:)],

(iii) k|S| — Y12 [N (s:)].



Proof. Denote by G[S] the graph induced by S, and by E(G]S]) the set of edges in the
induced graph G[S]. Clearly, the total degree sum of all the vertices in G[S] is 2|E(G[S])].
Then we have

S| S| |5

kIS| = 2[E(GIS]) + D [Na(si)| + Y [Na(si)| + D [No(s)|.
=1 =1 =1
Multiplying this equality by three, we can write
S S S
(k|S] — 2 [Na(s)l) + (BIS| — S INB(s0)]) + (kIS| = S0 [Ne(si))

=2BIE@GIS)] + S [NaCsi)| + X0 INs(s) + 20 [N (s0)])-

Therefore, one of the three summands on the left hand side of this equality must be even.

Hence the result holds. [ ]

In the proof of the next result we use the following notation. By NZ(v) we mean the

vertices w in the graph G which are at distance 2 from vertex v.

Theorem 3.7 Let G be a (k,g)-cage with g > 11. Then either G is mazimally connected or
w(G — S) = 2, for every vertex-cut S of G of cardinality |S| < k.

Proof. Let S be a vertex-cut of G with |S| < k. Hence by the results proved in [7, 4]
and Theorem 3.5 we know k > 5. Assume that G — S contains more than 2 connected
components, say A and B, and a further (not necessary connected) component C. Since
|S| < k, by Lemma 3.1, it is clear that in A (respectively, B and C), there exists a vertex u

(respectively, v and w), which has distance (g — 1)/2 (for g odd) or g/2 —1 (for g even) to S.

Denote the neighbors of u by u;, for i = 1,2,...,k, so N(u) = {uy,ug,...,u;}. Similarly,
denote the neighbors of u; by u;;, for j = 1,2,...,k — 1, so N(u;) = {u, w1, Uia, . - ., Uif—_1}-
We shall use the same notation for the neighbors of v and w. We also denote the vertices in
S by si, i =1,2,...,|S|. For each s;, denote the set of neighbors of s; in A by A;. Similarly,
we define the sets B; and C;.



Without loss generality, we may assume, by Lemma 3.2, that k|S| — Li'l |A;| is even.

Additionally, we assume that |B| < |C|. Let us consider the following three subgraphs:
H = G[(AUS) — ({u} UN(w) UN(w))),
K =G[BUS], and
K'=G[(BUS) = ({v} UN(v) UN(uvg))l-

We will construct a k-regular graph G*, with girth at least g, by removing the edges
between vertices in S, if any, and joining the vertices of H, K and K’ by some new edges.

The order of the resulting graph will be
V(G| = [V(H)| + |V (EK)| + [V(K')| = [V(A)| +2|V(B)| — 4k + 3[S| < [V(G)| — k - 3.

Sin k > 5 we will have constructed a (k, g)-graph with fewer vertices than the number of
vertices of the original graph G and, since G was assumed to be a (k, g)-cage, this is a

contradiction, by Theorem 3.6.

Next, we describe the new edges connecting vertices of H, K and K’. For easy presen-
tation, we shall still make reference to the vertex w; or v;, even though they do not exist in

these subgraphs.

A vertex s; in subgraph H will be arbitrarily matched with a vertex v; in K. We shall
remove k — |A;| edges between v; and its neighbors other than v, and connect these neighbors
of degree k —1 to s;. It is clear that after these operation, vertex s; in subgraph H has degree
k, and v; in K has degree |A;|, which are shown as the vertices on the bottom in the graph

depicted in Figure 1.

The vertex s; in K will be arbitrarily matched with a vertex v; in K’ and connected to
k — |B;| vertices v;j in N(v;) in K'. Tt is clear that after this operation, the vertices s; and
v;; will have degree k. We shall make the same connections between s; in K "and k — |B;]

vertices u;; in N(u;) in H.

10



Now, let u fix the degrees of the vertices v; in K. The total current degree of these vertices
is
S| S|

DAl + (k=S| k=K = (KIS| =Y |Ai]).

i=1 1=1
In other words, we still need to find k|S| — Zﬁll |A;| vertices in the graph to connect to
the vertices v; in K. Based on our assumption, we know that k|S| — Z‘Zi‘l |A;| is even.
We shall connect vertex v; to some vertices of N(vg;) in K’ and to some vertices of N (uy;)
in H. More precisely, for each v;, we shall connect v; to [(k — |4;])/2] vertices in N (vg;)
and to [(k — |Ai])/2] vertices in N(uy;), or vice versa, in such a way, that we will use
(k1S — 2% 1441) /2 vertices from N (uz)) and (k[S| — 32151 | 4,])/2 vertices from N2, (uy))
to connect to Nk (v). This implies that the number of leftover vertices of degree k — 1 in

subgraphs H and K’ is the same. Then we shall pair these vertices and connect them by an

edge. The resulting graph G* is shown in Figure 1.

N(v1)

N(v2) @E

TS

N(vk-1)

/’ N2(vk)

NZ(uk)

Figure 1: Structure of G*.
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To finish the proof, it is enough to show that there are no small cycles in G*. Considering
the new added edges, clearly, any new cycle, say C, which was introduced in the construction

has to utilize at least two new edges.

Case 1: The cycle C goes through two new edges incident with a common vertex s; € H.
Then the cycle C must go through two distinct vertices v;; in N(v) C V(K) at distance g — 2
from each other, because the edges v;v;; have been deleted from K. Therefore, the cycle C
has length at least g. A similar reasoning applies if the cycle C goes through two new edges

incident with a common vertex s; € K U K'.

Case 2: The cycle C goes through two new edges incident with a common vertex v; € K.
The reasoning is the same as in Case 1 if the cycle goes through two distinct vertices vy;; in
N(vg;) C V(K') or two distinct vertices ugi; in N(ug;) C V(H). So assume that the cycle
goes through one vertex vy;; in N(vg;) C V(K') and the other ug;; in N(ug;) C V(H). Since

ui;j in H has been connected with s; in K, we have, by Lemma 3.1, that
da (Ukij, Vkij) = A (Ukij, uig) + 1+ dgr(si,vki5) > g —5+1+[(9—1)/2] =3>g—2
because g > 11.

Case 3: The cycle C goes through two new edges incident with two distinct vertices s; in
H. Then the cycle C must go through two distinct vertices in N?(v) C V(K), which have
distance at least g — 4 from each other. As the vertices in S have distance at least 2 from
each other (since there is no edge between vertices in S), then the cycle C has length at least
g. The same applies if the cycle C goes through two new edges incident with two distinct

vertices s; in K U K'.

Case 4: The cycle C goes through two new edges, one of which sits inbetween s; € V(H)
and v;; € N2(v) C V(K), and another of which sits inbetween uy;; € V(H) and v; € V(K).
Since the edges v;v;; have been deleted from K, we have that the cycle has length at least
g —1+2+dg(ukj,si) > g.

Case 5: The cycle C goes through two new edges, one of which sits inbetween s; € V(K)
and v;; € N?(v) C V(K’), and another of which sits inbetween v; € V(K) and vg;; € V(K').

12



Now we have, by Lemma 3.1, that the cycle has length at least dg (v;, s;) + 2+ dg (Vgij, vij) >
(9 —3)/2] +2+g—5> g, because g > 11.

Case 6: The cycle C goes through two new edges, one of which sits inbetween v; €
V(K) and vij € N(vg) C V(K'), and another of which sits inbetween v, € V(K) and
Vkrj € N(vgr) C V(K'). In this case we have that v;vv, is a path of length 2 in K, while

di(Vkij, Virj) > g — 4. Thus the cycle has length at least g.

Case 7: The cycle C goes through two new edges, one of which sits inbetween uy,;; € V(H)
and vi;; € V(K'), and another of which sits inbetween w;; € V(H) and v;; € V(K'). Thus

the cycle has length at least 2(g —5)+2>g9. =

Remark: The purpose of the above theorem is to derive new revealing structural prop-
erties of (k, g)-cages, so that we are talking about a vertex-cut of cardinality at most k — 1,

even though the conjecture suggests that such vertex-cut does not exist.

4 Conclusion

In this paper, we have shown that if the vertex-cut is of cardinality smaller than & or is
the neighborhood of a vertex, then the graph obtained by removing this vertex-cut from a
(k, g)-cage, contains exactly two components. We also have proved that if (k,g)-cages are
not vertex superconnected, then the graph obtained by removing a nontrivial vertex-cut of
cardinality k£ has at most k£ — 2 components if k is even. Therefore, we propose the following

open problem.

Open Problem 1 How many components will there be if we remove a nontrivial vertezx-cut

of cardinality k from a (k, g)-cage if k is odd?

We also believe that (4, g)-cages are superconnected. We know that (4, g)-cages are 4-

connected. Now we know that if a (4, g)-cage is not vertex superconnected then there are 2

13



components after deleting a nontrivial cut-set of 4 vertices. Hence we propose the following

open problem.

Open Problem 2 Are (4, g)-cages vertex superconnected?

However, these problems beg further investigation and subsequent research could expand
to other topics, such as to find the toughness of a cage. In this paper, we have provided
some preliminary results proving that |S|/w(G — S) > k/k + 1 for any nontrivial vertex-cut

S. Thus we propose the following open problem

Open Problem 3 How many components will there be if we remove a trivial vertex-cut of

cardinality greater than k from a (k,g)-cage?
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