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Abstract

A (k,g)-cage is a k-regular graph of girth g and with the least possible number of

vertices. In this paper, we investigate the problem of how many connected components

there will be after removing a cutset of up to k vertices from a (k, g)-cage.
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1 Definitions

Throughout this paper, only undirected simple graphs without loops or multiple edges are

considered. Unless otherwise stated, we follow [3] for terminology and definitions.

The vertex set (respectively, edge set) of a graph G is denoted by V (G) (respectively,

E(G)). If V ′ is a nonempty subset of V then the subgraph induced by V ′ is denoted by

G[V ′]. Similarly, if E′ is a nonempty subset of E then the subgraph induced by E′ is denoted

by G[E′]. The subgraph obtained from G by deleting the vertices in V ′, together with their

incident edges, is denoted by G− V ′. The graph obtained from G by deleting a set of edges

E′ is denoted by G− E′.

The set of vertices adjacent to a vertex v is denoted by N(v). If X is a nonempty subset

of vertices, then N(X) stands for the set
(⋃

x∈X N(x)
) \ X. The degree of a vertex v is

deg(v) = |N(v)|, and a graph is called regular when all the vertices have the same degree.

The minimum degree of the graph is denoted by δ. The distance d(u, v) of two vertices u and

v in V (G) is the length of the shortest path between u and v. We also use the notion of a

distance between a vertex v and a set of vertices X, written d(v, X) : it is the distance from

v to a closest vertex in X.

The length of a shortest cycle in a graph G is called the girth of G. A k-regular graph with

girth g is called a (k, g)-graph. A (k, g)-graph is called a (k, g)-cage if it has the least possible

number of vertices. Throughout this paper, f(k, g) stands for the order of a (k, g)-cage.

A graph G is connected if there is a path between any two vertices of G. A connected

component of G is a maximal connected subgraph. Two vertices are in the same connected

component if and only if there exists a path between them. A nonempty connected graph

has one connected component.

Suppose that G is a connected graph. We say that G is t-connected if the deletion of at

least t vertices of G is required to disconnect the graph. Similarly, we say that a graph is

t-edge-connected if the deletion of at least t edges of G is required to disconnect the graph. A
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vertex-cut (respectively, edge-cut) of a graph is a set of vertices (respectively, edges), whose

removal disconnects the graph. A graph is maximally connected (respectively, maximally

edge-connected) if the minimum cardinality of vertex-cut (respectively, edge-cut) is equal to

the minimum degree of the graph. An edge-cut W is called trivial if it contains all the edges

incident with some vertex, that is, {xxi ∈ E(G) : xi ∈ N(x)} ⊆ W , for some x ∈ V (G). A

vertex-cut S is called trivial if there exists some vertex v in G−S such that N(v) is contained

in S. A maximally edge-connected graph is edge superconnected if all its minimal edge-cuts

(with cardinality equal to δ) are trivial. A vertex superconnected graph is defined similarly.

2 Introduction

Network reliability concerns the capability of an interconnection network to provide enough

communication volume to support message exchanges, it is a very important parameter to

study. It is customary to model a network structure as a graph and study the properties of

network structures in graph theory terms, there are many parameters have been introduced

to measure the reliability of a network structure. In a network with unreliable components

such as wires or communication devices, disconnection is a major concern, which is caused by

faulty nodes and/or faulty edges, preventing the disconnected parties from communicating

with each other. The connectivity is used to measure the connectedness of a graph, i.e. how

likely a graph is to be disconnected. In this paper, we shall study the connectivity of an

important graph structure which is known as cages.

Cages were introduced by Tutte in [16]. For example, the cycle Cn is the unique (2, n)-

cage, the complete graph Kn is the unique (n− 1, 3)-cage, the complete bipartite graph Kn,n

is the (n, 4)-cage, the Petersen graph is the (3, 5)-cage, the Hoffman-Singleton graph is the

(7, 5)-cage, and the Heawood graph is the (3, 6)-cage. Note that cages are not necessarily

unique for each given pair of values k and g. For instance, there exist 18 non-isomorphic

(3, 9)-cages, all of order 58 [2].

Much research has been carried out on cages; however, in general, not a lot is known

3



about this structure. The study of the connectivity of cages has been suggested by several

authors. In particular, in [4, 8] was proved that every (k, g)-cage with k ≥ 3 is 3-connected.

Furthermore, Fu, Huang, and Rodger [7] have proposed the following conjecture.

Conjecture 1 [7] Every (k, g)-cage is maximally connected.

There are many results available related to this conjecture, see [9, 10, 11, 12], but currently

the conjecture is still open.

As we know that connectivity is a very rough measure of the vulnerability, many refine-

ments of the classical connectivity concept have been introduced, for example, the toughness,

the restricted connectivity, etc. In this paper, we investigate the number of connected compo-

nents obtained from a (k, g)-cage by removing the vertices of a vertex-cut S with cardinality

|S| ≤ k. The results reveal new structural properties of (k, g)-cages.

3 New results

Jiang and Mubayi [8] proved the following theorem.

Theorem 3.1 [8] Let S be a vertex-cut of a (k, g)-cage with k ≥ 3 and g ≥ 5. Then,

the diameter of G[S] is at least bg/2c. Furthermore, the inequality is strict if dG[S](u, v) is

maximized for exactly one pair of vertices.

Let w(G−S) denote the number of components of G−S where S is any vertex-cut. Using

Theorem 3.1 it was shown in [13] the following result for cubic cages.

Theorem 3.2 [13] Every cubic cage is quasi 4-connected, that is to say, any minimum

vertex-cut of a cubic cage is the neighborhood of a vertex, say N(v), and w(G−N(v)) = 2.

Following the same line of reasoning, using Theorem 3.1 we immediately obtain the fol-

lowing corollary.
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Corollary 3.1 Let G be a (k, g)-cage with k ≥ 3 and g ≥ 6. For every vertex v of G, we

have w(G−N(v)) = 2.

Proof. Suppose G has a vertex v such that G − N(v) has at least three components, one

of them consisting of vertex v. Then S = {v} ∪ N(v) is a vertex-cut because G − S has at

least two or more components. As its induced subgraph G[{v} ∪N(v)] has diameter 2, from

Theorem 3.1, it follows that 2 ≥ bg/2c, which is a contradiction because g ≥ 6.

Next question concerns a nontrivial vertex-cut. Suppose G is an edge superconnected

k-regular graph, and S is a nontrivial vertex-cut. The following theorem provides an upper

bound for w(G− S).

Theorem 3.3 Let G be a k-regular edge superconnected graph. Then for any vertex-cut S

the following statements hold:

(i) If S is nontrivial then the number of components is w(G− S) ≤ k|S|/(k + 1).

(ii) If the girth g ≥ 5, |S| ≤ k and k ≥ 4 is even, then either w(G − S) ≤ k − 2 or G

has vertex connectivity at most k − 2 except for k = 4 and S trivial, in which case

w(G− S) ≤ 3.

Proof. Let S be a nontrivial vertex-cut of G and let Ci (i = 1, 2, . . . , w(G− S)) denote the

components of the graph obtained when the vertices of S are removed from G. Let us also

denote by [S, V (Ci)] the set of edges joining a vertex in S with a vertex in Ci. Since S is

nontrivial then every Ci has at least two vertices. Furthermore, since G is edge superconnected

we have ∣∣∣[S, V (Ci)]
∣∣∣ ≥ k + 1, i = 1, 2, . . . , w(G− S). (1)

Moreover, as the graph is k-regular, by (1) we have

w(G− S)(k + 1) ≤
w(G−S)∑

i=1

∣∣∣[S, V (Ci)]
∣∣∣ ≤ k|S|. (2)
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Therefore w(G − S) ≤ k|S|/(k + 1), hence item (i) holds. To prove (ii) assume k ≥ 4

even and |S| ≤ k. First suppose that S is nontrivial, thus we may apply item (i) whence

w(G−S) ≤ k−1. Suppose w(G−S) = k−1 because otherwise item (ii) is valid. Substituting

this value in (2) and taking into account (1) it follows that there exists a component Ĉ such

that ∣∣∣[S, V (Ĉ)]
∣∣∣ = k + 1. (3)

Then |N(S) ∩ V (Ĉ)| ≤
∣∣∣[S, V (Ĉ)]

∣∣∣ = k + 1. If |N(S) ∩ V (Ĉ)| = k + 1 then each vertex of

N(S) ∩ V (Ĉ) is adjacent to exactly one vertex of S, which means that each of these k + 1

vertices has degree k − 1 in Ĉ. In other words, each vertex of Ĉ has degree k except k + 1

(which is odd) vertices which have odd degree k−1, which is impossible. If |N(S)∩V (Ĉ)| = k

then, by (3), one vertex of N(S) ∩ V (Ĉ) has degree k − 2 in Ĉ, while the others must have

degree k−1 in Ĉ. That is, Ĉ has k−1 vertices of odd degree k−1, which is again impossible.

If |N(S) ∩ V (Ĉ)| = k − 1 then we would obtain that there is an odd number of vertices in

N(S)∩ V (Ĉ) of odd degree in Ĉ (either k− 2 vertices of degree k− 1 and 1 vertex of degree

k−3, or k−3 vertices of degree k−1), which is also impossible. Thus we have |N(S)∩V (Ĉ)| ≤
k − 2. Now, in order to prove that N(S) ∩ V (Ĉ) is a vertex-cut of G, it is enough to prove

V (Ĉ) 6= N(S)∩V (Ĉ). Otherwise, we would have |V (Ĉ)|+ |S| = |N(S)∩V (Ĉ)|+ |S| ≤ 2k−2.

As S is nontrivial every vertex v ∈ N(S)∩V (Ĉ) has a neighbor w ∈ N(S)∩V (Ĉ). Since the

girth g ≥ 5 then N(v)∩N(w) = ∅, hence |V (Ĉ)|+ |S| ≥ |{u, v}|+ |N(u)−w|+ |N(w)−u| ≥
2 + 2(k − 1) = 2k, which is a contradiction. Then G has vertex connectivity at most k − 2

if S is a nontrivial vertex-cut. To finish the proof, assume S is trivial, which means that

there exists a vertex v in G − S such that S = N(v) because |S| ≤ k. That is, there is one

component formed by vertex v and the remaining components must have cardinality at least

2, because the girth g ≥ 5. Therefore, (1) still holds for every component except for that

formed by vertex v. Hence we have

(w(G−N(v))− 1)(k + 1) ≤
∑

Ci,v 6∈V (Ci)

∣∣∣[N(v), V (Ci)]
∣∣∣ ≤ k(k − 1), (4)

which implies w(G − N(v)) ≤ k − 1. Suppose that w(G − N(v)) = k − 1 and k ≥ 6, from

(1) and (4) we obtain again (3), so that the reasoning is the same as above to prove that the
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vertex connectivity is at most k − 2.

Combining results in [11] and [10], we have concluded in [10] that:

Theorem 3.4 [10] All (k, g)-cages are edge superconnected, that is, all the minimal edge-

cuts are trivial.

Therefore, combining Theorems 3.3 and 3.4 and Corollary 3.1, we obtain the following

result, whose proof is immediate and, therefore, is omitted.

Corollary 3.2 Let G be a (k, g)-cage with g ≥ 5. Then for any vertex-cut S the following

statements hold:

(i) If S is nontrivial then |S|/w(G− S) ≥ (k + 1)/k.

(ii) If the girth g ≥ 5, S is nontrivial with |S| ≤ k and k ≥ 4 is even, then either w(G−S) ≤
k − 2 or G has vertex connectivity at most k − 2.

(iii) If S is trivial with |S| ≤ k, then w(G− S) = 2.

The toughness τ(G) of a non complete graph G is defined as τ(G) = min{|S|/w(G−S)},
where the minimum is taken over all cut-sets S. Thus, Corollary 3.2 is a first step to find a

lower bound for the toughness of a (k, g)-cage with k ≥ 3 and g ≥ 5. It remains to find a

lower bound for |S|/w(G− S) for every trivial vertex-cut S with |S| ≥ k + 1.

Furthermore, in [12] it was proved the following result.

Theorem 3.5 [12] Every (k, g)-cage with k ≥ 4 and g ≥ 10 is 4-connected.

As an immediate consequence of Theorems 3.4 and 3.5 and Corollary 3.2 the following

result is derived for (4, g)-cages.
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Corollary 3.3 Let G be a (4, g)-cage with g ≥ 10. Then either G is vertex superconnected

or w(G− S) = 2, for every nontrivial vertex-cut S with |S| = 4.

Since Conjecture 1 is still open, to reveal more structural properties of (k, g)-cages, next,

we would like to show that the deletion of at most k − 1 vertices from a (k, g)-cage G, with

k ≥ 4 and g ≥ 11, results in a new graph with at most 2 connected components. Hopefully,

this result will contribute towards settling Conjecture 1.

In order to prove this result, we shall often use the following well known monotonicity

theorem.

Theorem 3.6 [5, 7] If k ≥ 3 and 3 ≤ g1 < g2 then f(k, g1) < f(k, g2).

Moreover, we need the following lemma which has been proved in [1, 6, 14, 15].

Lemma 3.1 [1, 6, 14, 15] Let G be a graph with girth g, and minimum degree δ. Assume

that S is a vertex-cut of cardinality |S| ≤ δ − 1. Then, for any connected component C in

G− S, there exists some vertex x ∈ V (C) such that d(x, S) ≥ b(g − 1)/2c.

We begin by proving a technical lemma.

Lemma 3.2 Let G be a k-regular graph and assume that S = {si : i = 1, . . . , |S|} is a vertex-

cut. Suppose that A and B are two connected components of G−S and C = G−S− (A∪B).

Then one of the following numbers is even

(i) k|S| −∑|S|
j=1 |NA(si)|,

(ii) k|S| −∑|S|
j=1 |NB(si)|,

(iii) k|S| −∑|S|
j=1 |NC(si)|.
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Proof. Denote by G[S] the graph induced by S, and by E(G[S]) the set of edges in the

induced graph G[S]. Clearly, the total degree sum of all the vertices in G[S] is 2|E(G[S])|.
Then we have

k|S| = 2|E(G[S])|+
|S|∑

i=1

|NA(si)|+
|S|∑

i=1

|NB(si)|+
|S|∑

i=1

|NC(si)|.

Multiplying this equality by three, we can write

(k|S| −∑|S|
i=1 |NA(si)|) + (k|S| −∑|S|

i=1 |NB(si)|) + (k|S| −∑|S|
i=1 |NC(si)|)

= 2(3|E(G[S])|+ ∑|S|
i=1 |NA(si)|+

∑|S|
i=1 |NB(si)|+

∑|S|
i=1 |NC(si)|).

Therefore, one of the three summands on the left hand side of this equality must be even.

Hence the result holds.

In the proof of the next result we use the following notation. By N2
G(v) we mean the

vertices w in the graph G which are at distance 2 from vertex v.

Theorem 3.7 Let G be a (k, g)-cage with g ≥ 11. Then either G is maximally connected or

w(G− S) = 2, for every vertex-cut S of G of cardinality |S| < k.

Proof. Let S be a vertex-cut of G with |S| < k. Hence by the results proved in [7, 4]

and Theorem 3.5 we know k ≥ 5. Assume that G − S contains more than 2 connected

components, say A and B, and a further (not necessary connected) component C. Since

|S| < k, by Lemma 3.1, it is clear that in A (respectively, B and C), there exists a vertex u

(respectively, v and w), which has distance (g− 1)/2 (for g odd) or g/2− 1 (for g even) to S.

Denote the neighbors of u by ui, for i = 1, 2, . . . , k, so N(u) = {u1, u2, . . . , uk}. Similarly,

denote the neighbors of ui by uij , for j = 1, 2, . . . , k − 1, so N(ui) = {u, ui1, ui2, . . . , uik−1}.
We shall use the same notation for the neighbors of v and w. We also denote the vertices in

S by si, i = 1, 2, . . . , |S|. For each si, denote the set of neighbors of si in A by Ai. Similarly,

we define the sets Bi and Ci.

9



Without loss generality, we may assume, by Lemma 3.2, that k|S| − ∑|S|
i=1 |Ai| is even.

Additionally, we assume that |B| ≤ |C|. Let us consider the following three subgraphs:

H = G[(A ∪ S)− ({u} ∪N(u) ∪N(uk))],

K = G[B ∪ S], and

K ′ = G[(B ∪ S)− ({v} ∪N(v) ∪N(vk))].

We will construct a k-regular graph G∗, with girth at least g, by removing the edges

between vertices in S, if any, and joining the vertices of H, K and K ′ by some new edges.

The order of the resulting graph will be

|V (G∗)| = |V (H)|+ |V (K)|+ |V (K ′)| = |V (A)|+ 2|V (B)| − 4k + 3|S| ≤ |V (G)| − k − 3.

Sin k ≥ 5 we will have constructed a (k, g)-graph with fewer vertices than the number of

vertices of the original graph G and, since G was assumed to be a (k, g)-cage, this is a

contradiction, by Theorem 3.6.

Next, we describe the new edges connecting vertices of H, K and K ′. For easy presen-

tation, we shall still make reference to the vertex ui or vi, even though they do not exist in

these subgraphs.

A vertex si in subgraph H will be arbitrarily matched with a vertex vi in K. We shall

remove k−|Ai| edges between vi and its neighbors other than v, and connect these neighbors

of degree k−1 to si. It is clear that after these operation, vertex si in subgraph H has degree

k, and vi in K has degree |Ai|, which are shown as the vertices on the bottom in the graph

depicted in Figure 1.

The vertex si in K will be arbitrarily matched with a vertex vi in K ′ and connected to

k − |Bi| vertices vij in N(vi) in K ′. It is clear that after this operation, the vertices si and

vij will have degree k. We shall make the same connections between si in K ′ and k − |Bi|
vertices uij in N(ui) in H.
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Now, let u fix the degrees of the vertices vi in K. The total current degree of these vertices

is
|S|∑

i=1

|Ai|+ (k − |S|) k = k2 − (k|S| −
|S|∑

i=1

|Ai|).

In other words, we still need to find k|S| − ∑|S|
i=1 |Ai| vertices in the graph to connect to

the vertices vi in K. Based on our assumption, we know that k|S| − ∑|S|
i=1 |Ai| is even.

We shall connect vertex vi to some vertices of N(vki) in K ′ and to some vertices of N(uki)

in H. More precisely, for each vi, we shall connect vi to d(k − |Ai|)/2e vertices in N(vki)

and to b(k − |Ai|)/2c vertices in N(uki), or vice versa, in such a way, that we will use

(k|S| −∑|S|
i=1 |Ai|)/2 vertices from N2

H(uk)) and (k|S| −∑|S|
i=1 |Ai|)/2 vertices from N2

K′(uk))

to connect to NK(v). This implies that the number of leftover vertices of degree k − 1 in

subgraphs H and K ′ is the same. Then we shall pair these vertices and connect them by an

edge. The resulting graph G∗ is shown in Figure 1.

A B B

v1
vk

N(u1)

N(u2)

N(uk−1)

N2(uk)

N(v1)

N(v2)

N(vk−1)

N(vk) N2(vk)

N(vk−1)

N(v2)

N(v1)

s1

s2
s2

s1

s1

s2

v2

v

Figure 1: Structure of G∗.
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To finish the proof, it is enough to show that there are no small cycles in G∗. Considering

the new added edges, clearly, any new cycle, say C, which was introduced in the construction

has to utilize at least two new edges.

Case 1: The cycle C goes through two new edges incident with a common vertex si ∈ H.

Then the cycle C must go through two distinct vertices vij in N(v) ⊂ V (K) at distance g− 2

from each other, because the edges vivij have been deleted from K. Therefore, the cycle C
has length at least g. A similar reasoning applies if the cycle C goes through two new edges

incident with a common vertex si ∈ K ∪K ′.

Case 2: The cycle C goes through two new edges incident with a common vertex vi ∈ K.

The reasoning is the same as in Case 1 if the cycle goes through two distinct vertices vkij in

N(vki) ⊂ V (K ′) or two distinct vertices ukij in N(uki) ⊂ V (H). So assume that the cycle

goes through one vertex vkij in N(vki) ⊂ V (K ′) and the other ukij in N(uki) ⊂ V (H). Since

uij in H has been connected with si in K ′, we have, by Lemma 3.1, that

dG∗(ukij , vkij) = dH(ukij , uij) + 1 + dK′(si, vkij) ≥ g − 5 + 1 + b(g − 1)/2c − 3 ≥ g − 2

because g ≥ 11.

Case 3: The cycle C goes through two new edges incident with two distinct vertices si in

H. Then the cycle C must go through two distinct vertices in N2(v) ⊂ V (K), which have

distance at least g − 4 from each other. As the vertices in S have distance at least 2 from

each other (since there is no edge between vertices in S), then the cycle C has length at least

g. The same applies if the cycle C goes through two new edges incident with two distinct

vertices si in K ∪K ′.

Case 4: The cycle C goes through two new edges, one of which sits inbetween si ∈ V (H)

and vij ∈ N2(v) ⊂ V (K), and another of which sits inbetween ukij ∈ V (H) and vi ∈ V (K).

Since the edges vivij have been deleted from K, we have that the cycle has length at least

g − 1 + 2 + dH(ukij , si) > g.

Case 5: The cycle C goes through two new edges, one of which sits inbetween si ∈ V (K)

and vij ∈ N2(v) ⊂ V (K ′), and another of which sits inbetween vi ∈ V (K) and vkij ∈ V (K ′).
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Now we have, by Lemma 3.1, that the cycle has length at least dK(vi, si)+2+dK′(vkij , vij) ≥
b(g − 3)/2c+ 2 + g − 5 > g, because g ≥ 11.

Case 6: The cycle C goes through two new edges, one of which sits inbetween vi ∈
V (K) and vkij ∈ N(vki) ⊂ V (K ′), and another of which sits inbetween vr ∈ V (K) and

vkrj ∈ N(vkr) ⊂ V (K ′). In this case we have that vivvr is a path of length 2 in K, while

dK′(vkij , vkrj) ≥ g − 4. Thus the cycle has length at least g.

Case 7: The cycle C goes through two new edges, one of which sits inbetween ukij ∈ V (H)

and vkij ∈ V (K ′), and another of which sits inbetween uij ∈ V (H) and vij ∈ V (K ′). Thus

the cycle has length at least 2(g − 5) + 2 > g.

Remark: The purpose of the above theorem is to derive new revealing structural prop-

erties of (k, g)-cages, so that we are talking about a vertex-cut of cardinality at most k − 1,

even though the conjecture suggests that such vertex-cut does not exist.

4 Conclusion

In this paper, we have shown that if the vertex-cut is of cardinality smaller than k or is

the neighborhood of a vertex, then the graph obtained by removing this vertex-cut from a

(k, g)-cage, contains exactly two components. We also have proved that if (k, g)-cages are

not vertex superconnected, then the graph obtained by removing a nontrivial vertex-cut of

cardinality k has at most k− 2 components if k is even. Therefore, we propose the following

open problem.

Open Problem 1 How many components will there be if we remove a nontrivial vertex-cut

of cardinality k from a (k, g)-cage if k is odd?

We also believe that (4, g)-cages are superconnected. We know that (4, g)-cages are 4-

connected. Now we know that if a (4, g)-cage is not vertex superconnected then there are 2
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components after deleting a nontrivial cut-set of 4 vertices. Hence we propose the following

open problem.

Open Problem 2 Are (4, g)-cages vertex superconnected?

However, these problems beg further investigation and subsequent research could expand

to other topics, such as to find the toughness of a cage. In this paper, we have provided

some preliminary results proving that |S|/w(G− S) ≥ k/k + 1 for any nontrivial vertex-cut

S. Thus we propose the following open problem

Open Problem 3 How many components will there be if we remove a trivial vertex-cut of

cardinality greater than k from a (k, g)-cage?
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[12] X. Marcote, C. Balbuena, I. Pelayo, J. Fàbrega, (δ, g)-cages with g ≥ 10 are 4-connected,

Discrete Math., 301 no. 1 (2005), 124–136.

[13] X. Marcote, I. Pelayo, C. Balbuena, Every cubic cage is quasi 4-connected, Discrete

Math. 266 (1-3) (2003), 311–320.

[14] T. Soneoka, H. Nakada, M. Imase, Sufficient conditions for dense graphs to be maximally

connected. Proc. ISCAS85 (1985), 811–814.

[15] T. Soneoka, H. Nakada, M. Imase, C. Peyrat, Sufficient conditions for maximally con-

nected dense graphs, Discrete Math. 63 (1987), 53–66.

[16] W.T. Tutte, A family of cubical graphs. Proc. Cambridge Philos. Soc., (1947), 459-474.

15


